Presentations for Topological Modalities

Mark Williams

November 17, 2024

Mark Williams Presentations for Topological Modalities

This work is internal to homotopy type theory (HoTT).

- This work is internal to homotopy type theory (HoTT).
- That means the details might be a little unfamiliar.

- This work is internal to homotopy type theory (HoTT).
- That means the details might be a little unfamiliar.
- For this the main thing we need to know is:

- This work is internal to homotopy type theory (HoTT).
- That means the details might be a little unfamiliar.
- For this the main thing we need to know is:
 - We write x : X instead of $x \in X$.

- This work is internal to homotopy type theory (HoTT).
- That means the details might be a little unfamiliar.
- For this the main thing we need to know is:
 - We write x : X instead of $x \in X$.
 - We have a universe \mathcal{U} and a subtype $\operatorname{Prop}_{\mathcal{U}} \subseteq \mathcal{U}$.

- This work is internal to homotopy type theory (HoTT).
- That means the details might be a little unfamiliar.
- For this the main thing we need to know is:
 - We write x : X instead of $x \in X$.
 - We have a universe \mathcal{U} and a subtype $\operatorname{Prop}_{\mathcal{U}} \subseteq \mathcal{U}$.
 - Given a function $B : A \to U$, we can form a type $\sum_{a:A} B(a) : U$.

• HoTT = internal language of $(\infty, 1)$ -topoi.¹

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some (∞ , 1)-topoi.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some (∞ , 1)-topoi.
- We can do "higher" synthetic maths in HoTT + axioms.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some $(\infty, 1)$ -topoi.
- ▶ We can do "higher" synthetic maths in HoTT + axioms.

Synthetic algebraic geometry.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some $(\infty, 1)$ -topoi.
- ▶ We can do "higher" synthetic maths in HoTT + axioms.
 - Synthetic algebraic geometry.
 - Synthetic differential geometry.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some $(\infty, 1)$ -topoi.
- ▶ We can do "higher" synthetic maths in HoTT + axioms.
 - Synthetic algebraic geometry.
 - Synthetic differential geometry.
 - Synthetic category theory.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some $(\infty, 1)$ -topoi.
- ▶ We can do "higher" synthetic maths in HoTT + axioms.
 - Synthetic algebraic geometry.
 - Synthetic differential geometry.
 - Synthetic category theory.
- Sometimes it is helpful to consider subtopoi.

¹Shulman 2019.

²Spitters, Shulman, and Rijke 2020.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some $(\infty, 1)$ -topoi.
- ▶ We can do "higher" synthetic maths in HoTT + axioms.
 - Synthetic algebraic geometry.
 - Synthetic differential geometry.
 - Synthetic category theory.
- Sometimes it is helpful to consider subtopoi.
- ▶ We can construct subtopoi in the language of HoTT.²

¹Shulman 2019.

²Spitters, Shulman, and Rijke 2020.

- HoTT = internal language of $(\infty, 1)$ -topoi.¹
- HoTT + axioms = internal language of some $(\infty, 1)$ -topoi.
- ▶ We can do "higher" synthetic maths in HoTT + axioms.
 - Synthetic algebraic geometry.
 - Synthetic differential geometry.
 - Synthetic category theory.
- Sometimes it is helpful to consider subtopoi.
- We can construct subtopoi in the language of HoTT.²

Goal

Work with subtopoi in HoTT in a sheaf theoretic way. Use this in different synthetic maths.

¹Shulman 2019.

²Spitters, Shulman, and Rijke 2020.

• Grothendieck topology = collection of covers $\{f_i : U_i \to X\}$.

- Grothendieck topology = collection of covers $\{f_i : U_i \rightarrow X\}$.
- Consider subcategory of sheaves:

$$F(X)
ightarrow \prod_{i} F(U_i)
ightarrow \prod_{i,j} F(U_i imes_X U_j)$$

- Grothendieck topology = collection of covers $\{f_i : U_i \rightarrow X\}$.
- Consider subcategory of sheaves:

$$F(X)
ightarrow \prod_{i} F(U_i)
ightarrow \prod_{i,j} F(U_i imes_X U_j)$$

▶ Internalising: Want $\sum_i f_i : \sum_i \mathbf{y} U_i \rightarrow \mathbf{y} X$ to be surjective on the subcategory of sheaves.

- Grothendieck topology = collection of covers $\{f_i : U_i \rightarrow X\}$.
- Consider subcategory of sheaves:

$$F(X)
ightarrow \prod_{i} F(U_i)
ightarrow \prod_{i,j} F(U_i imes_X U_j)$$

- ▶ Internalising: Want $\sum_i f_i : \sum_i \mathbf{y} U_i \rightarrow \mathbf{y} X$ to be surjective on the subcategory of sheaves.
- Internally a map is surjective iff all its fibers are inhabitted.

Subtopoi in HoTT

Consider a family of propositions $P: I \to \operatorname{Prop}_{\mathcal{U}}$

Definition $(^3)$

A type X is a **sheaf** for P if for all i : I the natural map

 $X \to (P(i) \to X)$

is an equivalence. We define $U_P := \{X : U \mid X \text{ is a sheaf}\}.$

³Spitters, Shulman, and Rijke 2020.

Subtopoi in HoTT

Consider a family of propositions $P: I \to \operatorname{Prop}_{\mathcal{U}}$

Definition $(^3)$

A type X is a **sheaf** for P if for all i : I the natural map

 $X \to (P(i) \to X)$

is an equivalence. We define $U_P := \{X : U \mid X \text{ is a sheaf}\}.$

We have a sheafification functor $\bigcirc_P : \mathcal{U} \to \mathcal{U}_P$

³Spitters, Shulman, and Rijke 2020.

Subtopoi in HoTT

Consider a family of propositions $P: I \to \operatorname{Prop}_{\mathcal{U}}$

Definition $(^3)$

A type X is a **sheaf** for P if for all i : I the natural map

 $X \to (P(i) \to X)$

is an equivalence. We define $U_P := \{X : U \mid X \text{ is a sheaf}\}.$

We have a sheafification functor $\bigcirc_P : \mathcal{U} \to \mathcal{U}_P$

Definition $(^3)$

The choice of a subuniverse and sheafification functor, such that there exists a family of propositions generating it is called a **topological modality**.

³Spitters, Shulman, and Rijke 2020.

Definition $(^4)$

A presentation of a topological modality is a collection T of types closed under Σ , containing 1. The topological modality **presented by** T is given by the propositions ||X|| for X in T.

Note: ||X|| is the propositional truncation of X, or the image factorisation of $X \rightarrow 1$.

Definition $(^4)$

A presentation of a topological modality is a collection T of types closed under Σ , containing 1. The topological modality **presented by** T is given by the propositions ||X|| for X in T.

Examples

- Trivial presentation $T = \{1\}$, presenting whole universe.
- ► Given any topological modality, defined on $P: I \to \operatorname{Prop}_{\mathcal{U}}$ the Σ -closure of P gives a presentation.

⁴Moeneclaey 2024.

Definition $(^4)$

A presentation of a topological modality is a collection T of types closed under Σ , containing 1. The topological modality **presented by** T is given by the propositions ||X|| for X in T.

Examples

- Trivial presentation $T = \{1\}$, presenting whole universe.
- Given any topological modality, defined on $P: I \to \operatorname{Prop}_{\mathcal{U}}$ the Σ -closure of P gives a presentation.

More interesting examples will need new axioms in HoTT...

⁴Moeneclaey 2024.

Definition

A cover for a presentation T is a map $f : X \to Y$ such that for all y : Y, the fiber $f^{-1}(y)$ is in T.

Definition

A **cover** for a presentation T is a map $f : X \to Y$ such that for all y : Y, the fiber $f^{-1}(y)$ is in T.

Lemma

Covers are closed under pullback and comoposition.

► HoTT is higher:

Set / 0-type	Sheaf of sets
1-type	Sheaf of groupoids
<i>n</i> -type	Sheaf of <i>n</i> -groupoids

► HoTT is higher:

Set / 0-type	Sheaf of sets
1-type	Sheaf of groupoids
<i>n</i> -type	Sheaf of <i>n</i> -groupoids

So expect to get higher sheaf conditions.

HoTT is higher:

Set / 0-type	Sheaf of sets
1-type	Sheaf of groupoids
<i>n</i> -type	Sheaf of <i>n</i> -groupoids

- So expect to get higher sheaf conditions.
- For each *n*, want a condition for an *n*-type to be a sheaf.

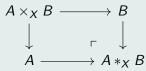
HoTT is higher:

Set / 0-type	Sheaf of sets
1-type	Sheaf of groupoids
<i>n</i> -type	Sheaf of <i>n</i> -groupoids

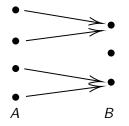
- So expect to get higher sheaf conditions.
- For each *n*, want a condition for an *n*-type to be a sheaf.
- Need to use homotopy constructs.

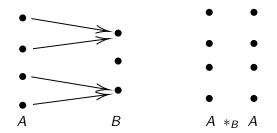
Definition

Given $f : A \rightarrow X$ and $g : B \rightarrow X$ their **join** is the pushout

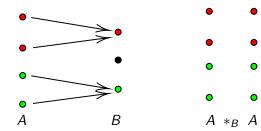


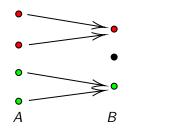
Given $f : A \to X$ write A_X^{*n} for the *n*-fold iterated join of *f* with itself.

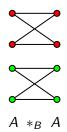




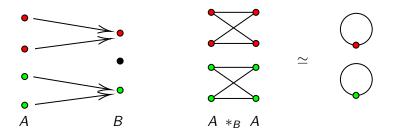
Joins







Mark Williams Presentations for Topological Modalities



Idea

• A_X^{*n} increasingly looks like im f.

Idea

• A_X^{*n} increasingly looks like im f.

• To an *n*-type, A_X^{*n+2} is as good as the image.

Iterated Joins

Idea

• A_X^{*n} increasingly looks like im f.

• To an *n*-type,
$$A_X^{*n+2}$$
 is as good as the image.

Theorem $(^5)$

For any $f : A \rightarrow B$ we have

$$\operatorname{colim}(A \to A_B^* \to A_B^{*2} \to A_B^{*3} \to \cdots) \simeq \operatorname{im} f$$

Iterated Joins

Idea

• A_X^{*n} increasingly looks like im f.

• To an *n*-type,
$$A_X^{*n+2}$$
 is as good as the image.

Theorem $(^5)$

For any $f : A \rightarrow B$ we have

$$\operatorname{colim}(A \to A_B^* \to A_B^{*2} \to A_B^{*3} \to \cdots) \simeq \operatorname{im} f$$

Lemma

Let $A : \mathcal{U}$ and $X : \mathcal{U}$ be an n-type. The map $A^{*(n+2)} \to A^{*(n+3)}$ induces an equivalence $(A^{*(n+3)} \to X) \simeq (A^{*(n+2)} \to X)$.

⁵Rijke 2017.

Iterated Joins

Idea

• A_X^{*n} increasingly looks like im f.

• To an *n*-type,
$$A_X^{*n+2}$$
 is as good as the image.

Theorem $(^5)$

For any $f : A \rightarrow B$ we have

$$\operatorname{colim}(A \to A_B^* \to A_B^{*2} \to A_B^{*3} \to \cdots) \simeq \operatorname{im} f$$

Lemma

Let $A : \mathcal{U}$ and $X : \mathcal{U}$ be an n-type. The map $A^{*(n+2)} \to A^{*(n+3)}$ induces an equivalence $(A^{*(n+3)} \to X) \simeq (A^{*(n+2)} \to X)$.

Surjectivity on an *n*-type is controlled by (n + 2)-fold joins.

⁵Rijke 2017.

Fix a presentation T.

Theorem (Sheaf Condition)

Let X be an n-type. Then X is a sheaf for T iff for all T-covers $f : A \rightarrow B$ the natural map

$$(B \to X) \to (A_B^{*n+2} \to X)$$

is an equivalence.

Sheaf Conditions

Question: Why is this a sheaf condition?

Take n = 0 for instance. Then $A_B^{*2} = \operatorname{colim}(A \times_B A \rightrightarrows A)$.

Question: Why is this a sheaf condition?

Take n = 0 for instance. Then $A_B^{*2} = \operatorname{colim}(A \times_B A \rightrightarrows A)$.

Corollary

A 0-type X is a sheaf for T iff for all T-covers $f : A \rightarrow B$ the natural map

$$X^B \to \lim(X^A \rightrightarrows X^{A \times_B A})$$

is an equivalence.

Question: Why is this a sheaf condition?

Take n = 0 for instance. Then $A_B^{*2} = \operatorname{colim}(A \times_B A \rightrightarrows A)$.

Corollary

A 0-type X is a sheaf for T iff for all T-covers $f:A\to B$ the natural map

$$X^B
ightarrow \mathsf{lim}(X^A
ightarrow X^{A imes_B A})$$

is an equivalence.

Proof.

By squinting:

$$X(B) \to X(A) \rightrightarrows X(A \times_B A)$$

We have $A_B^{*3} = \operatorname{colim}(A \times_B A \times_B A \stackrel{\rightarrow}{\rightrightarrows} A \times_B A \stackrel{\rightarrow}{\rightrightarrows} A)$.

We have
$$A_B^{*3} = \operatorname{colim}(A \times_B A \times_B A \stackrel{\rightarrow}{\rightrightarrows} A \times_B A \stackrel{\rightarrow}{\rightrightarrows} A)$$
.

Corollary

A 1-type X is a sheaf for T iff for all T-covers $f : A \rightarrow B$ the natural map

$$X^B
ightarrow \mathsf{lim}(X^A
ightarrow X^{A imes_B A}
ightarrow X^{A imes_B A imes_B A})$$

is an equivalence.

We have
$$A_B^{*3} = \operatorname{colim}(A \times_B A \times_B A \stackrel{\rightarrow}{\rightrightarrows} A \times_B A \stackrel{\rightarrow}{\rightrightarrows} A)$$
.

Corollary

A 1-type X is a sheaf for T iff for all T-covers $f : A \rightarrow B$ the natural map

$$X^B
ightarrow \mathsf{lim}(X^A
ightarrow X^{A imes_B A}
ightarrow X^{A imes_B A imes_B A})$$

is an equivalence.

Slight Inconvenience

We can only do this for each external natural number. There is no way to prove internally for all $n : \mathbb{N}$ that this holds.

⁶Cherubini, Coquand, and Hutzler 2023.

- \blacktriangleright Let $\mathbb T$ be an algebraic theory.
- We axiomatise the classifying topos for \mathbb{T} .

⁶Cherubini, Coquand, and Hutzler 2023.

- Let \mathbb{T} be an algebraic theory.
- We axiomatise the classifying topos for \mathbb{T} .
- Very similar to the axioms for synthetic algebraic geometry.

⁶Cherubini, Coquand, and Hutzler 2023.

- We axiomatise the classifying topos for \mathbb{T} .
- Very similar to the axioms for synthetic algebraic geometry.

Examples

⁶Cherubini, Coquand, and Hutzler 2023.

- We axiomatise the classifying topos for \mathbb{T} .
- Very similar to the axioms for synthetic algebraic geometry.

Examples

► If T is the theory of rings, then get "presheaf synthetic algebraic geometry"⁶

⁶Cherubini, Coquand, and Hutzler 2023.

- We axiomatise the classifying topos for \mathbb{T} .
- Very similar to the axioms for synthetic algebraic geometry.

Examples

- ► If T is the theory of rings, then get "presheaf synthetic algebraic geometry"⁶
- ► If T is the theory of bounded distributive lattices with 0 and 1, get synthetic higher category theory.⁷

⁶Cherubini, Coquand, and Hutzler 2023.

⁷Gratzer, Weinberger, and Buchholtz 2024.

Introduce presentations for pre-existing topologies:

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.
 - Classifying covers.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.
 - Classifying covers.
 - Verify axioms in the subuniverse.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.
 - Classifying covers.
 - Verify axioms in the subuniverse.
- Reason about cohomology.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.
 - Classifying covers.
 - Verify axioms in the subuniverse.
- Reason about cohomology.
 - Quasicoherent sheaves cohomology agrees in Zariski, Étale, fppf.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.
 - Classifying covers.
 - Verify axioms in the subuniverse.
- Reason about cohomology.
 - Quasicoherent sheaves cohomology agrees in Zariski, Étale, fppf.

- Introduce presentations for pre-existing topologies:
 - Zariski, Étale, fppf topologies.
 - Simplicial topology on distributive lattices.
- Prove features of these presentations internally, with simple proofs.
 - Subcanonicity.
 - Classifying covers.
 - Verify axioms in the subuniverse.
- Reason about cohomology.
 - Quasicoherent sheaves cohomology agrees in Zariski, Étale, fppf.

Thank you!

Cherubini, Felix, Thierry Coquand, and Matthias Hutzler (2023). A Foundation for Synthetic Algebraic Geometry. arXiv: 2307.00073 [math.AG].

Gratzer, Daniel, Jonathan Weinberger, and Ulrik Buchholtz (2024). Directed univalence in simplicial homotopy type theory. arXiv: 2407.09146 [cs.L0].

Rijke, Egbert (2017). The join construction. arXiv: 1701.07538 [math.CT].

Shulman, Michael (2019). All (∞ , 1)-toposes have strict univalent universes. arXiv: 1904.07004 [math.AT].

Spitters, Bas, Michael Shulman, and Egbert Rijke (2020). "Modalities in homotopy type theory". In: *Logical Methods in Computer Science* 16.