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Type Theory Warning

▶ This work is internal to homotopy type theory (HoTT).

▶ That means the details might be a little unfamiliar.
▶ For this the main thing we need to know is:

▶ We write x : X instead of x ∈ X .
▶ We have a universe U and a subtype PropU ⊆ U .
▶ Given a function B : A → U , we can form a type∑

a:A B(a) : U .
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Motivation

▶ HoTT = internal language of (∞, 1)-topoi.1

▶ HoTT + axioms = internal language of some (∞, 1)-topoi.
▶ We can do “higher” synthetic maths in HoTT + axioms.

▶ Synthetic algebraic geometry.
▶ Synthetic differential geometry.
▶ Synthetic category theory.

▶ Sometimes it is helpful to consider subtopoi.

▶ We can construct subtopoi in the language of HoTT.2

Goal

Work with subtopoi in HoTT in a sheaf theoretic way.
Use this in different synthetic maths.

1Shulman 2019.
2Spitters, Shulman, and Rijke 2020.
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From External to Internal

In ordinary category theory:

▶ Grothendieck topology = collection of covers {fi : Ui → X}.

▶ Consider subcategory of sheaves:

F (X ) →
∏
i

F (Ui ) ⇒
∏
i ,j

F (Ui ×X Uj)

▶ Internalising: Want
∑

i fi :
∑

i yUi → yX to be surjective on
the subcategory of sheaves.

▶ Internally a map is surjective iff all its fibers are inhabitted.
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Subtopoi in HoTT

Consider a family of propositions P : I → PropU

Definition (3)

A type X is a sheaf for P if for all i : I the natural map

X → (P(i) → X )

is an equivalence. We define UP := {X : U | X is a sheaf}.

We have a sheafification functor ⃝P : U → UP

Definition (3)

The choice of a subuniverse and sheafification functor, such that
there exists a family of propositions generating it is called a
topological modality.

3Spitters, Shulman, and Rijke 2020.
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Presentations

Definition (4)

A presentation of a topological modality is a collection T of
types closed under Σ, containing 1.
The topological modality presented by T is given by the
propositions ∥X∥ for X in T .

Note: ∥X∥ is the propositional truncation of X , or the image
factorisation of X → 1.

4Moeneclaey 2024.
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Presentations
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propositions ∥X∥ for X in T .

Examples

▶ Trivial presentation T = {1}, presenting whole universe.

▶ Given any topological modality, defined on P : I → PropU the
Σ-closure of P gives a presentation.

More interesting examples will need new axioms in HoTT...
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Basic properties

Definition

A cover for a presentation T is a map f : X → Y such that for all
y : Y , the fiber f −1(y) is in T .

Lemma

▶ Any equivalence is a cover.

▶ Covers are closed under pullback and comoposition.
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Sheaf Conditions

▶ HoTT is higher:

Set / 0-type Sheaf of sets
1-type Sheaf of groupoids
n-type Sheaf of n-groupoids

▶ So expect to get higher sheaf conditions.

▶ For each n, want a condition for an n-type to be a sheaf.

▶ Need to use homotopy constructs.
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Sheaf Conditions

Definition

Given f : A → X and g : B → X their join is the pushout

A×X B B

A A ∗X B
⌜

Given f : A → X write A∗n
X for the n-fold iterated join of f with

itself.

Mark Williams Presentations for Topological Modalities



Joins

A B
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A B A ∗B A
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Joins

A B A ∗B A

≃
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Iterated Joins

Idea

▶ A∗n
X increasingly looks like im f .

▶ To an n-type, A∗n+2
X is as good as the image.

Theorem (5)

For any f : A → B we have

colim(A → A∗
B → A∗2

B → A∗3
B → · · · ) ≃ im f

Lemma

Let A : U and X : U be an n-type. The map A∗(n+2) → A∗(n+3)

induces an equivalence (A∗(n+3) → X ) ≃ (A∗(n+2) → X ).

Surjectivity on an n-type is controlled by (n + 2)-fold joins.

5Rijke 2017.
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Sheaf Conditions

Fix a presentation T .

Theorem (Sheaf Condition)

Let X be an n-type. Then X is a sheaf for T iff for all T -covers
f : A → B the natural map

(B → X ) → (A∗n+2
B → X )

is an equivalence.

Mark Williams Presentations for Topological Modalities



Sheaf Conditions

Question: Why is this a sheaf condition?

Take n = 0 for instance. Then A∗2
B = colim(A×B A ⇒ A).

Corollary

A 0-type X is a sheaf for T iff for all T -covers f : A → B the
natural map

XB → lim(XA ⇒ XA×BA)

is an equivalence.

Proof.

By squinting:
X (B) → X (A) ⇒ X (A×B A)
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Sheaf Conditions

We have A∗3
B = colim(A×B A×B A →→→ A×B A ⇒ A).

Corollary

A 1-type X is a sheaf for T iff for all T -covers f : A → B the
natural map

XB → lim(XA ⇒ XA×BA →→→ XA×BA×BA)

is an equivalence.

Slight Inconvenience

We can only do this for each external natural number. There is no
way to prove internally for all n : N that this holds.
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Applications

▶ Let T be an algebraic theory.

▶ We axiomatise the classifying topos for T.
▶ Very similar to the axioms for synthetic algebraic geometry.

Examples

▶ If T is the theory of rings, then get “presheaf synthetic
algebraic geometry”6

▶ If T is the theory of bounded distributive lattices with 0 and
1, get synthetic higher category theory.7

6Cherubini, Coquand, and Hutzler 2023.
7Gratzer, Weinberger, and Buchholtz 2024.
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Applications

With the theory established we can:
▶ Introduce presentations for pre-existing topologies:

▶ Zariski, Étale, fppf topologies.
▶ Simplicial topology on distributive lattices.

▶ Prove features of these presentations internally, with simple
proofs.

▶ Subcanonicity.
▶ Classifying covers.
▶ Verify axioms in the subuniverse.

▶ Reason about cohomology.

▶ Quasicoherent sheaves cohomology agrees in Zariski, Étale,
fppf.

Thank you!
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