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Introduction

Homotopy type theory (HoTT), or univalent foundations, has seen major interest

in the past decade since its conception by Voevodsky [Voe06]. HoTT is a new,

higher dimensional, foundational system, with its “types” acting more like homotopy

types of topological spaces or ∞-groupoids than the sets of traditional set theoretic

foundations. This offers benefits for higher dimensional category theorists, allowing

natural constructions of previously complicated structures such as ∞-groups [BDR18;

BR21].

This work focuses on a specific higher categorical structure: Modalities. Modalities

are operators on higher categories which encode nice subcategories that often carry

interesting geometric content. Modalities have seen important applications to a novel

presentation of mathematical physics described by Urs Schreiber in the language of

higher category theory [KS17; Sch13]. Interest has developed in translating Schreiber’s

work into HoTT, potentially simplfying its presentation. This has been started by

Shulman [Shu15], Cherubini [Che18] and Myers [Mye22b; Mye22a]. The reformulation

of Schreiber’s work relies on a robust understanding of the behaviour of modalities in

HoTT.

In the first chapter we introduce type theory, HoTT and its basic properties. Our

main references are “Homotopy Type Theory” [Uni13] and “Introduction to Homotopy

Type Theory” [Rij19]. We continue by developing the theory of modalities in the

language of HoTT, following “Modalities in Homotopy Type Theory” [SSR20]. We

describe formal analogues of geometric structures such as tangent bundles, derivative

maps and étale maps with respect to a given modality, first introduced into HoTT

by Cherubini [Che18]. The étale maps are of great interest to us, and we show how

their relatively straightforward definition allows the derivation of many expected

geometric results. In the third chapter we describe nullification, an important class of

modalities. We work towards progressing an open question, classifying the étale maps

of nullification:
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Quesiton 0.1. Given a pointed type (D, d), are the étale maps for nullification

precisely those that lift uniquely against the inclusion of the basepoint 1 → D?

We streamline and generalise an existing presentation of the special case when D

is the n-sphere. Almost all of the proof of this works the same when D = ΣB is the

suspension of another type, exluding one technical property about B, which we call

goodness. We have not shown if types other than the n-sphere are good, however we

hope this generalisation provides a framework for extending the result.
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Chapter 1

Homotopy Type Theory

1.1 Martin-Löf Type Theory

We begin by describing Martin-Löf Type Theory (MLTT), which serves as the foun-

dation of HoTT. The fundamental building blocks of MLTT are types and terms of

those types. These are analagous to sets and elements in set theory, although the

correspondence is not exact. For example, we might have a type N of natural numbers

and a term 2 of type N, which we donote 2 : N. A statement of this form 2 : N is an

example of a judgement. A judgement is not a proposition, or a question, about

the number 2, as in set theory, but instead describes the construction of the term 2.

Every term in MLTT comes with a type equipped. MLTT has four judgements:

1. A type Asserts A is a type.
2. A ≡ B Asserts A and B are judgementally equal types.
3. a : A Asserts a is a term of type A.
4. a ≡ b : A Asserts a and b are judgementally equal terms of type A.

We assert that judgemental equality of types and terms form equivalence relations. In

a formal presentation of MLTT several other rules would be required, however for our

purposes these are irrelevant.

We are allowed to make judgements in the context of a collection of other typing

judgements. A basic instance of this is writing “x : A ⊢ B(x) type”. This means that

the type B(x) varies with the value of x : A. We call B(x) a type family over A.

For example we might have a judgement n : N ⊢ Rn type defining the type family of

n-dimensional Euclidean space. Similarly we may have contextual judgements of the

form x : A ⊢ Φ : B(x). Here Φ is a formula depending on the variable x, giving a term

of type B(x).
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MLTT has a collection of basic types and type formers that will enable mathematics

to be done. Unlike sets, which are simply described by their elements, type constructions

require several components in the form of a collection of syntactic rules. These are:

1. Formation rules: Describe how to build our new type out of other types.

2. Introduction rules: Describe how to form canonical elements of the type.

3. Elimination rules: Tell us how to define maps out of the type.

4. Computation rules: Describe how the introduction and elimination rules

interact.

A key difference to set theory is we do not a priori know all the terms of a given

type after defining it, only the canonical ones. For many types we may characterise

their elements, using the internal notion of equality defined later.

1.1.1 Dependent function types

Dependent functions behave like normal functions but with varying codomains.

Definition 1.1. Let A be a type and x : A ⊢ B(x) be a type family.

1. Formation: There is a type
∏

x:AB(x) of dependent functions, otherwise

known as the Π-type. For notational convenience we will sometimes write this

(x : A) → B(x).

2. Introduction: To form a dependent function, we need a contextual judgement of

the form x : A ⊢ Φ : B(x). Given such a formula we may obtain a term:

λx.Φ :
∏
x:A

B(x)

In more familiar notation we might write this as the function x 7→ Φ.

3. Elimination: For Π-types the elimination rule enables us to apply a dependent

functions to terms. Given any f :
∏

x:AB(x) and a : A we get a term f(a) : B(a).

4. Computation: We have two rules called the β and η rules. The β-rule tells us

how to evaluate dependent function. Given a judgement x : A ⊢ Φ : B(x) for

each a : A we have:

(λx.Φ)(a) ≡ Φ[a/x] : B(a)
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Here Φ[a/x] is Φ with every occurrence of the variable x subsituted for a. The

η-rule says for any f :
∏

x:AB(x) we have:

λx.f(x) ≡ f :
∏
x:A

B(x)

This implies every element of
∏

x:AB(x) is judgementally equal to a λ-expression.

Ordinary functions are the special case dependent functions over a constant type

family B(x) ≡ C for all x : A. In this case we denote
∏

x:AB(x) as A → C

or occasionally CA. We take → to be right associative, so that A → B → C is

A→ (B → C).

From now on we will present the rules specifying a type more informally.

1.1.2 Dependent Pair Types

Similarly to Π-types, dependent pair types, or Σ-types, are a generalisation of

cartesian products, where the type of the second value depends on the first. Given

a type A and a type family B(x) over A, we can form the type
∑

x:AB(x). We

sometimes use the more readable syntax (x : A)×B(x). The usual cartesian product

is recovered when the B(x) is constant. If B(x) ≡ C for all x : A we write A× C for∑
x:AB(x).

Given a : A and b : B(a) we can form a pair (a, b) :
∑

x:AB(x).

The elimination rule says to define a dependent function from a Σ-type, it is

enough to define it on the canonical elements: The pairs. Given a type family D(z)

for z :
∑

a:AB(a) we can upgrade a dependent function

f : (a : A) → (b : B(a)) → D(a, b)

to a function

g : (p :
∑
x:A

B(x)) → D(p)

satisfying g((a, b)) ≡ f(a, b) for a : A and b : B(a).

Example 1.2. Let x : A ⊢ B(x) be a type family. Using the elimination rule we may

define projection maps soley on the pairs (a, b).

pr1 :
∑
x:A

B(x) → A pr2 :

(
z :
∑
x:A

B(x)

)
→ B(pr1(z))

pr1(a, b) :≡ a pr2(a, b) :≡ b
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1.1.3 Coproduct Types

Given types A and B we can form their coproduct A + B. This comes with maps

inl : A → A + B and inr : B → A + B giving canonical elements. Suppose C(z)

is a type family over z : A + B. Given two functions f : (a : A) → C(inl(a)) and

g : (b : B) → C(inr(b)) we can form their sum, f + g : (z : A + B) → C(z). This

computes as (f + g)(inl(a)) ≡ f(a) and (f + g)(inr(b)) ≡ g(b).

1.1.4 Natural Numbers

We define the natural numbers N to be the type with canonical terms given by 0 : N
and a map succ : N → N. The elimination rule for the naturals is mathematical

induction: Given a type family B(n) over N, an element b0 : B(0), and a function

g :
∏

n:NB(n) → B(succ(n)), we obtain a function f :
∏

n:NB(n). This comes with

predictable computation rules:

f(0) ≡ b0

f(succ(n)) ≡ g(n, f(n))

We will denote 1 :≡ succ(0), 2 :≡ succ(1) and so on.

1.1.5 Unit and Empty Types

We assert the existence of a type 1 with a single contructor ⋆ : 1. To define a

dependent function f :
∏

x:1B(x) it suffices to give an element b : B(⋆). This map

satisfies f(⋆) ≡ b.

Similarly, we have a type 0 with no constructors. This automatically gives a

(necessarily unique) dependent function !0 :
∏

x:0B(x) for any type family over 0,

making 0 the initial type. We interpret a function A → 0 as a refuation that A is

inhabited, since if it were, every type would be inhabited by initiallity. We thus define

the negation of A to be ¬A :≡ A→ 0.

1.1.6 Identity Types

The types we are defining are inductive. That is, they can be seen as the smallest

type freely generated by the given constructors. For example the natural numbers

are the free type with an element and an endomap. The identity types are defined

as an inductive family of types. Given a type A for each a, b : A we have a type

a =A b. This is the type of proofs that a and b are equal. For each a : A we have a
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constructor refla : a = a representing the reflexive proof that a equals a. This satisfies

the following induction principle, often called the J-rule or path induction:

Given a type family D(a, b, p) ranging over a, b : A and p : a =A b, and a function

g :
∏

a:AD(a, a, refla) we obtain a function

f :
∏
a,b:A

∏
p:a=Ab

D(a, b, p)

which computes as

f(a, a, refla) ≡ g(a)

The identity types are preferred over judgemental equality since the latter only

identifies syntactically equivalent terms. For instance given a variable n : N it is not

true that n+ 1 ≡ 1 + n, since these are syntactic terms with no way to reduce one to

the other. However the type n+ 1 = 1 + n is inhabited.

Path induction is what allows for all the groupoidal structure of identites to be

derived. As a first example we derive the concatenation and inverse operations on

identites, corresponding to symmetry and transitivty of equality.

Lemma 1.3 (Groupoid structure on identities). Given a type A with a, b, c : A. Then

we have:

1. A function (−)−1 : a =A b→ b =A a

2. A function (− · −) : a =A b→ b =A c→ a =A c

Proof. 1. We are looking for a function (−)−1 :
∏

a,b:A a =A b→ b =A a. By path

induction it is enough to define a function
∏

a:A a =A a which we can define by

λa. refla. The function (−)−1 then satisfies refl−1
a ≡ refla

2. We are looking for a function:

(− · −) :
∏

a,b,c:A

a =A b→ b =A c→ a =A c

Applying path induction twice it is enough to define refla · refla :≡ refla.

More applications of path induction show the groupoidal laws are satisfied:

Lemma 1.4 (Groupoid laws on identities). Given a type A with a, b, c, d : A, p : a = b,

q : b = c and r : c = d we terms of the following identity types:
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1. refla ·p = p · reflb = p.

2. p · p−1 = refla and p−1 · p = reflb.

3. p · (q · r) = (p · q) · r

1.1.7 Universes

Universes are large collections of types, similar to Grothendieck universes in set theory,

which are closed under the type forming operations
∏
,
∑

and = specified before. We

assert that for each finite collection of types or type families there is a universe U
containing all of them. Using universes is a common way to describe type familes. A

type family on A is a function B : A→ U for some universe U . We will not include

technical details regarding universes and we will work with only a single universe U
throughout this dissertation.

1.1.8 Propositions as Types

Unlike set theory, MLTT is its own deductive system. This means there is no secondary

logical system attatched, instead logic is done within the type theory. To state and

prove logical statements in MLTT, we build a type corresponding to the statement

and show it is inhabited. For example, we would say n : N is even if the following

type is inhabited: ∑
m:N

2m = n

An inhabitant of this type is a pair (m, p) where m : N and p : 2m = n, witnessing a

proof that n is even.

The relationship between logic and type theory is as follows:

Type Theory Propositional Logic

Type X Proposition X
Term x : X Proof of Proposition X

Coproduct X + Y Strong Disjunction X ∨ Y
Cartesian Product X × Y Conjuction X ∧ Y

Functions X → Y Implication X ⇒ Y
Type family P : X → U Predicate P (x)

Π-type
∏

x:X P (x) Universal Quantification ∀x : P (x)
Σ-type

∑
x:X P (x) Strong Existential Quantification ∃x : P (x)

8



Strong disjunction refers to the fact that not only do we know X or Y is true, but

we are told which one of them is true. Similarly in a strong existential quantification

we are given a choice of an x : X such that P (x), not just told there exists one. This

distinction is not often made in set theory, but will be important for us, and we will

introduce the type theoretic weak notions later.

1.2 Homotopy Type Theory

We now describe notions introduced by Hoffman and Streicher [HS98] and Voevod-

sky [Voe06], extending MLTT with homotopy theoretic constructions. These allow a

topological interpretation of HoTT in the model category of simplicial sets [KL18].

More recently HoTT has been shown to be the internal language of (∞, 1)-topoi [Shu19],

a large class of higher categories. As a consequence, HoTT can be used to describe

complicated higher categorical structures with relative simplicity.

1.2.1 The Homotopy Interpretation

The innovation of univalent foundations was to notice that identity types in MLTT

are more complex than traditional equality: They act more like paths in a topological

space. Continuing this analogy we obtain a table of conversions between MLTT and

homotopy theory:

Type Theory Homotopy Theory

Type X Homotopy Type X

Term x : X Point of X

Equality p : x = y Path between x and y in X

Type Family B : X → U Fibration over the space X
pr1 :

∑
x:X B(x) → X

Dependent Function f :
∏

x:X B(x) Section of the fibration

Pointwise Equality of f, g : X → Y∏
x:X f(x) = g(x)

Homotopy of functions f ∼ g

Using this translational tool, we can develop several homotopy theoretic construc-

tions.
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1.2.2 Truncation Levels

The identity types in MLTT can be between any types. Thus we can form higher

identity types between terms of identity types. For some types, iterating higher paths

eventually stabilises. Given the circle in set theoretic topology S1 ⊆ R2, all maps

Sn → S1 are homotopic for n ≥ 2. The circle thus has no homotopy information higher

than its first homotopy, that is, it is 1-truncated. We now internalize truncation levels

into type theory.

We start by defining contractible types and propositions.

isContr(A) :≡
∑
c:A

∏
a:A

c = a

isProp(A) :≡
∏
x,y:A

x = y

These form the base of the sequence of truncation levels. isContr translates to

contractibility in topology since it describes a centre of contraction c : A, and a

homotopy from the identity on A to the constant map at c. It can be shown that

all the higher equalities of a contractible type are themselves contractible. Reading

logically isContr(A) says A is a singleton.

The second truncation level is comprised of propositions. In a proposition all

elements are equal, however the type might be empty. Types that are propositions

intuitively represent properties, since a property is thought of as being either true

(inhabited) or false (empty). Again it can be shown that the higher equality types

of a proposition are contractible. We call the universe of propositions Prop :≡∑
A:U isProp(A). This enables a handy description of subtypes of a type X, as maps

P : X → Prop. We say x is contained in P if we have a term of P (x).

We continue to define the heirarchy of truncation levels:

isTrunc : Z≥−2 → U → U

isTrunc−2(A) :≡ isContr(A)

isTrunc−1(A) :≡ isProp(A)

And for n ≥ 1

isTruncn+1(A) :≡
∏
x,y:A

isTruncn(x = y)

Not all types are n-truncated for some n. A conjectural example is the two sphere S2.

10



1.2.3 Fibres and Equivalences

Definition 1.5. Given a map f : A→ B and b : B we can form the fibre of f at b.

This encodes the notion of preimage at a point.

fibf (b) :≡
∑
a:A

f(a) = b

Definition 1.6. A map f : A → B is an equivalence if we have a term of the

following type:

isEquiv(f) :≡
∏
b:B

isContr(fibf (b))

We say A and B are equivalent if we have a term of type:

A ≃ B :≡
∑

f :A→B

isEquiv(f)

Remark 1.7. This definition of equivalence is internalised from the notion of weak

equivalence of topological spaces.

A remarkable feature of equivalence is it encodes isomorphism on standard mathe-

matical structures. For example, equivalence on the type of groups is group isomor-

phism, on metric spaces is isometry and on metrizable spaces is homeomorphism. A

practical benefit of HoTT is unifying these different notions of isomorphism into one

encompassing definition of equivalence.

Additionally two types are equivalent iff there are mutually inverse maps between

them. We favour equivalences over inverses since the type of inverses of a map is not a

proposition: it can have multiple distinct elements. The type of equivalences, however,

is a proposition [Uni13, Lemma 4.4.4].

Example 1.8. The identity function id : A→ A is an equivalence since for all b : A

we have:

fibid(b) ≡
∑
a:A

id(a) = b

≡
∑
a:A

a = b

This type is contractible, with centre of contraction (b, reflb) by path induction.
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1.2.4 Univalence

As it is, the identity type of MLTT is underspecified. Additional axioms must be

assumed to inhabit this with enough elements to successfully perform mathematics.

Traditionally “Axiom K” was chosen, however this eliminates the possibility of higher

equality type, by asserting for any p, q : a = b we have p = q. The downside is the

loss of the ∞-groupoidal nature of types. A solution to this is the univalence axiom,

which additionally incorparates the common mathematical intuition that isomorphic

objects are indistinguishable.

We note two equal types are always equivalent, since we can define a function

idToEquiv :
∏

A,B:U(A = B) → (A ≃ B) by path induction. On (A,A, reflA), define

this to be the identity equivalence from Example 1.8.

Axiom 1.9 (Univalence). For any universe U , the function idToEquiv is itself an

equivalence.

A slogan (though as it turns out equivalent) form of Univalence is that (A = B) ≃
(A ≃ B).

An important consequence of the univalence axiom is function extensionality, a

result which says two maps are equal iff they are pointwise equal.

Definition 1.10. Using path induction, for all f, g : A→ B we get a map

funExt− : f = g →

(∏
x:A

f(x) = g(x)

)

defined on reflf by

funExt−(reflf ) :≡ λx. reflf(x)

Theorem 1.11 (Function Extensionality (Section 4.9 [Uni13])). For f, g : A→ B the

map funExt− is an equivalence. We call the inverse funExt.

Once we have univalence, identity types can now have more than one element, and

all homotopical constructions work as expected. For example we can define the loop

spaces of a pointed type:

Definition 1.12. A pointed type is a pair (X, x) where X is a type and x : X

Given two pointed types (X, x) and (Y, y) the pointed maps are

X →∗ Y :≡ (f : X → Y )× (f(x) = y)

12



Definition 1.13. Given a pointed type (X, x) its loop space is the pointed type

Ω(X, x) :≡ ((x = x), reflx).

More generally for each n : N the nth loop space is defined inductively as

Ω0(X, x) :≡ X

Ωn+1(X, x) :≡ Ω(Ωn(X, x))

1.2.5 Transport and groupoid laws

In HoTT we interpret types as ∞-groupoids. This means that all functions should be

functors between these groupoids, which we show now.

Lemma 1.14. Let f : A → B and p : a1 = a2 in A. Then we have a term

apf (p) : f(a1) = f(a2)

Proof. This follows from path induction. Assume a1 ≡ a2 and p ≡ refla1 . Then define

apf (refla1) :≡ reflf(a1).

Lemma 1.15 (Groupoid Laws). Let f : A → B and g : B → C, with p : a1 =A a2,

q : a2 =A a3. Then:

1. apg◦f (p) = (apg ◦ apf )(p)

2. apid(p) = p

3. apf (p · q) = apf (p) · apf (q)

4. apf (p
−1) = apf (p)

−1

Proof. All four of these follow immediately from path induction.

All the higher coherences necessary for a functor between ∞-groupoids can also

be shown.

We also have a notion known as transport. Given a type family B : A→ U and

p : a1 =A a2 what can we say about B(a1) and B(a2)? We cannot directly compare

elements since these are different types, however there is a natural function between

them, called the transport of p over B.

Definition 1.16. Let B : A → U and p : a1 =A a2. Transporting along p over B is

the function p∗ : B(a1) → B(a2) defined by path induction as (refla1)∗ = idB(a1)

13



1.2.6 Higher Inductive Types

So far the types we have introduced have been freely generated by a collection of con-

structors, defining canonical elements of our type. HoTT allows a more general notion

of constructor, in which we no longer just specify elements, but also certain identities

between canonical terms. Types specified in this way are known as Higher Inductive

Types (HITs). HITs can be used to perform standard topological constructions in

type theory.

Example 1.17. We may form the circle S1 as the HIT with constructors:

∗ : S1 loop : ∗ = ∗

The circle has all expected homotopy theoretic properties. For example it can be

shown that (∗ = ∗) ≃ Z [Uni13, Corollary 8.1.10] and hence that the fundamental

group π1(S
1) ≃ Z.

This definition of the circle does not generalise to higher dimensions easily. A more

principled definition uses suspensions.

Definition 1.18. Given a type X its suspension is the higher inductive type ΣX

with the following constructors:

1. Points N,S : ΣX.

2. A function merid : X → (N = S).

We consider ΣX as a pointed type with point N : ΣX

The visual intuition for the suspension is a “sphere” with equator X. N and S

are the north and south pole, and for each x : X we have a meridian line merid(x)

from N to S “through x”. For each point in X we have a different path from N to S.

From this definition we have an induction principle, known as the universal property

of suspensions. This tells us how to map out of a suspension:

(ΣA→ B) ≃ ((bN : B)× (bS : B)× (A→ bN = bS))

Definition 1.19. The n-sphere for n : N is defined inductively:

S0 :≡ 2 :≡ 1+ 1

Sn+1 :≡ ΣSn
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The previous definition of the circle agrees with this one [Uni13, Lemma 6.5.1].

The main benefit of this definition is the ability to use loop space/suspension

adjunction to completely characterise maps from the n-sphere.

Theorem 1.20 (Suspension/Loop Space Adjunction). For all pointed types (A, a0),

(B, b0) we have

(ΣA→∗ B) ≃ (A→∗ ΩB)

Proof. We compute:

ΣA→∗ B ≡ (f : ΣA→ B)× (f(N) = b0)

≃ ((bN : B)× (bS : B)× (A→ bN = bS))× (bN = b0)

≃ (bS : B)× (A→ b0 = bS)

≃ (bS : B)× (f : A→ b0 = bS)× (p : b0 = bS)× (f(a0) = p)

The first equivalence is given by the universal property, the second is given by

concatenating with the proof b0 = bN , and the third is given by noting (p : b0 = bS)×
(f(a0) = p) is contractible onto centre (f(a0), reflf(a0)). Similarly (bS : B)×(p : b0 = bS)

contracts onto (b0, reflb0). This gives

ΣA→∗ B ≃ (f : A→ b0 = b0)× (f(a0) = reflb0) ≡ A→∗ ΩB

Corollary 1.21. For all n : N we have Sn →∗ A ≃ ΩnA

Proof. By repeated application of the adjunction we have Sn →∗ A ≃ 2 →∗ Ω
nA ≃

ΩnA. The last equivalence is since a pointed map from 2 simply picks out a single

point.

Another important higher inductive type is propositional truncation. This

construction takes a type and squashes all higher homotopy information, leaving only

a proposition.

Definition 1.22. For a type A its propositional truncation ∥A∥ is the HIT with

constructors:

| − | : A→ ∥A∥ (x, y : ∥A∥) → x = y

The second constructor tells us precisely that ∥A∥ is a proposition. We think of

∥A∥ as the proposition “A is inhabited”. This satisfies the elimination rule that any

proposition B and map f : A→ B induces f̄ : ∥A∥ → B such that f̄(|a|) ≡ f(a).
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Propositional truncation allows us to define the weak existential quantifier, men-

tioned earlier. Given a type A and a type family B : A → U we say there weakly

exists a : A such that B(a) if we have a term of type ∥
∑

a:AB(a)∥. This type forgets

the choice of a specific a : A such that B(a), and simply tells us there is one. Similarly

we may construct the weak disjunction of types X and Y to be ∥X + Y ∥. This allows
us to encode more faithfully ideas from set theory.

Definition 1.23. A map f : A→ B is surjective if for all b : B we have a term of

type ∥ fibf (b)∥ ≡ ∥
∑

a:A f(a) = b∥.

1.2.7 Homotopy Pullbacks

A benefit of HoTT is the ease with which homotopy limits and colimits can be

described. Since everything is automatically up to homotopy, simply interpreting the

normal rules for limits and colimits gives the correct notions. For the geometric goals

we have in this work, the language of pullbacks is extremely important. To this end

we recall some of the theory of homotopy pullbacks now.

Definition 1.24. Let f : A→ C and g : B → C. Then define the pullback to be:

A×C B :≡
∑
x:A

∑
x:B

(f(a) = g(b))

This has natural maps given by:

A×C B → A A×C B → B

(a, b, p) 7→ a (a, b, p) 7→ b

Definition 1.25. Consider a commutative square:

P A

B C

h

k f

g

That is we have an identity p : f ◦ h = g ◦ k. We say this is a pullback square if for

any type X, the natural map

PX → AX ×CX BX

ϕ 7→ (h ◦ ϕ, k ◦ ϕ, ap−◦ϕ(p))

16



is an equivalence. Noting the data of a commutative square is equivalent to an element

of the type AX ×CX (BX), we may unpack this definition to the usual universal

property of the pullback.

We now state results about pullbacks that will be useful for the rest of the work.

Lemma 1.26 ([Rij19] Proposition 1.4.7). For any pair f : A → C and g : B → C,

the following square is a pullback square:

A×C B A

B C

f

g

Lemma 1.27 ([Rij19] Corollary 1.4.13). A commuting square

P A

B C

h

k f

g

with p : f ◦ h = g ◦ k is a pullback iff for all b : B the natural map

fibk(b) → fibf (g(b))

(x, γ) 7→ (h(x), funExt−(p, b) · apg(γ))

is an equivalence.

Lemma 1.28 ([Rij19] Corollary 2.1.18). Suppose we have a commuting cube

P ′ A′

P A

B′ C ′

B B

in which the front and left squares are pullbacks. Then the back square is a pullback

iff the right square is.

17



Chapter 2

Modalities

Modalities have their origins in philosophy and logic. In this setting modalities

are operations on propositions, modifying them to represent altered statements.

Traditional examples include asking if a proposition is “possibily” true or “neccessarily”

true. Another example is from temporal logic, a field with many applications in formal

verification, where we might consider if a statement is “eventually” true.

In type theory modalities play a significant role. Homotopy type theory is the

internal language of all (∞, 1)-topoi [Shu19]. An important part of the theory of

(∞, 1)-topoi is describing nice subcategories, in particular reflective subcategories.

These subcategories enable descriptions of various geometric structures. Introducing

modalities can involve changing the syntax of type theory. For example, Shulman

introduced a system of modalities to form Cohesive HoTT [Shu15] which internalised

the theory of cohesive (∞, 1)-topoi [Sch13] into type theory. More general modal type

theories, such as Multi-Mode Dependent Type theory allow the introduction of large

classes of modalities [Gra+21]. However, the language of HoTT is already powerful

enough to represent certain classes of modalities. In particular idempotent, monadic

modalities are straightforward to define. We focus on building the theory of these

modalities, and the geometric structures they encode.

2.1 Reflective Subuniverses

Definition 2.1. A reflective subuniverse of U consists of:

• A family isModal : U → Prop.

• A modal operator ⃝ : U → U .

• A modal unit η :
∏

A:U A→ ⃝A
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These must satisfy:

• For all A : U we have isModal(⃝A).

• Modal recursion: For all B : U satisfying isModal(B) the function

f 7→ f ◦ ηA : (⃝A→ B) → (A→ B)

is an equivalence.

Remark 2.2. The second condition above is a conceptually satisfying way of encoding

a higher coherent universal property with all higher coherences in HoTT. Expanding

the definition of equivalence, we may restate modal recursion: for all f : A→ B where

B is modal, we have a unique map f̂ : ⃝A→ B such that f = f̂ ◦ ηA.

A X

⃝A

ηA

f

f̂

By uniqueness we mean that the type of functions making the diagram commute is

contractible.

Lemma 2.3. Reflective subuniverses automatically preserves many type formers. In

particular:

1. Stability under
∏
: If A : U and B : A → U satisfies isModal(B(a)) for all

a : A then isModal(
∏

a:AB(a)).

2. Stability under =: Given A : U with isModal(A), and x, y : A we have

isModal(x = y).

Proof. For (1) see [Uni13], Theorem 7.7.2. For (2) see [SSR20], Lemma 1.25.

However
∑

-types are not necessarily preserved. By enforcing that these be

preserved too we gain an extremely useful property: modal recursion generalises to

dependent types, giving a modal induction principle.

Definition 2.4. A reflective subuniverse is Σ-closed if for A : U and B : A → U
satisfying isModal(A) and isModal(B(a)) for all a : A we have isModal(

∑
a:AB(a)).

We will refer to Σ-closed reflective subuniverses as modalities. From now on fix a

modality given by ⃝, η and isModal.
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Proposition 2.5 (Modal Induction [Uni13], Theorem 7.7.4). Given B : ⃝A → U
such that for all z : ⃝A we have isModal(B(z)), the precomposition map∏

z:⃝A

B(z) →
∏
a:A

B(ηA(a))

is an equivalence. We call the inverse map Ind⃝.

When we have a modality, the data of isModal can be recovered from the unit η.

Lemma 2.6. We have isModal(A) iff ηA : A→ ⃝A is an equivalence.

Proof. Suppose isModal(A). Define g : ⃝A → A by induction on the identity map

on A. Then g ◦ ηA = idA. Since for a : A we have (ηA ◦ g)(ηA(a)) = ηA(a), we may

apply modal induction to deduce ηA(g(z)) = z for all z : ⃝A. This is valid since

equality ⃝A is modal by Lemma 2.3. Then by function extensionality ηA ◦ g = id

Hence g is an inverse to ηA and so ηA is an equivalence.

The converse holds since if ηA is an equivalence then A is equivalent to the modal

type ⃝A and thus is modal.

Corollary 2.7. Any contractible type is modal.

Proof. Suppose A is contractible. Applying modal induction and contractibility we

deduce for all x, y : ⃝A that x = y. Since A is pointed, so is ⃝A, and we deduce ⃝A

is contractible. Then ηA is an equivalence, since any map between two contractible

types is, and A is modal.

Lemma 2.8. Given A,B : U with isModal(A) and isModal(B) we have isModal(A =

B).

Proof. By univalence

A = B ≃ (A ≃ B)

Unpacking the definition of A ≃ B, and applying Σ-closedness and stability under

type formers in Lemma 2.3, we deduce A ≃ B is modal. Hence A = B is modal.

Example 2.9. There are several examples of modalities appearing naturally in HoTT:

1. Propositional truncation: The truncation ∥ − ∥ acts as the modal operator,

| − | as the modal unit. The modal types are the propositions.

2. ¬¬-modality: Define the modal operator as A 7→ ¬¬A. The modal types are

the ¬¬-stable propositions. The unit is A→ ¬¬A given by

a : A 7→ (ϕ : (A→ 0) 7→ ϕ(a))
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Lemma 2.10 ([SSR20] Lemma 1.24). For any X and P : X → U we have

⃝
∑
x:X

P (x) ≃ ⃝
∑
x:X

(⃝P (x))

Lemma 2.11 (Functoriality and naturality of ⃝). Given f : A→ B we have a unique

map ⃝f : ⃝A→ ⃝B such that the following naturality diagram commutes:

A B

⃝A ⃝B

f

ηA ηB

⃝f

Further, the assignment of this map is functorial.

Proof. Let f : A→ B. Since ηB ◦ f : A→ ⃝B and ⃝B is modal we obtain a unique

map ⃝f : ⃝A → ⃝B such that ηB ◦ f = ⃝f ◦ ηA by modal recursion. So the

naturality diagram commutes.

This preserves identity maps since the naturailty square commutes with either

choice of map ⃝A→ ⃝A:

A A

⃝A ⃝A

ida

ηA ηA
⃝ida

id⃝A

By uniqueness of ⃝ida we deduce ⃝ida = id⃝A.

Similarly, the outer square diagram commutes for any f : A→ B and g : B → C:

A B C

⃝A ⃝B ⃝C

f

η

g

η η

⃝f

⃝(g◦f)

⃝g

By uniqueness ⃝g ◦⃝f = ⃝(g ◦ f).

2.2 Formal Geometry

The use of arbitrary modalities to perform geometric constructions was introduced

by Khavkine and Schreiber [KS17]. Cherubini partially translated this work into

HoTT [Che18]. We review some of these definitions.
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Definition 2.12. Let A : U and a : A. The ⃝-disk around a is the type:

D⃝(A, a) :≡
∑
x:A

ηA(a) = ηA(x)

Equivalently D⃝(A, a) is the following pullback:

D⃝(A, a) 1

A ⃝A

constηA(a)

ηA

This definition has pre-existing geometric intuition from synthetic differential

geometry, where Penon defined the infinitesimal neighbourhood of a point x as the set

of points y such that ¬¬(x = y) [Pen81], that is the ¬¬-disk around x. Following this

example, we may imagine the ⃝-disk as an infinitesimal disk around a point. In this

way they behave similary to tangent spaces.

Lemma 2.13. For A,B : U and f : A→ B, if p : ηA(a) = ηA(b) then we have a term:

f∗(p) : ηB(f(a)) = ηB(f(b))

Proof. We calculate:

ηB(f(a)) = ⃝f(ηA(a)) By naturality of ⃝f

= ⃝f(ηA(b)) By ap⃝f (p)

= ηB(f(b)) By naturality of ⃝f

Definition 2.14. Let A,B : U and f : A→ B. Lemma 2.13 allows us to define the

differential of f at a : A:

dfa : D⃝(A, a) → D⃝(B, f(a))

dfa(x, p) :≡ (f(x), f∗(p))

We can equivalently define the differential using the universal property of pullbacks.
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Noting the outer square commutes by Lemma 2.13, dfa is the unique map making

D⃝(A, a)

A D⃝(B, f(a)) 1

B ⃝B

dfa

f

ηA

commute.

Collecting all ⃝-disks together we can also form an infinitesimal analogue of the

tangent bundle.

Definition 2.15. The ⃝-tangent bundle of A is the type

T⃝A :≡
∑
a:A

D⃝(A, a)

Given f : A → B there is an induced map T⃝f : T⃝A → T⃝B given by

f(a, v) = (f(a), dfa(v))

Again the tangent bundle is a pullback:

T⃝A A

A ⃝A

ηA

ηA

We can describe the induced map using the universal property of the pullback:

T⃝A A

A T⃝B B

B ⃝B

T⃝f f

f

(2.1)

2.3 Étale maps

We now define étale maps. Étale maps in type theory correspond both to formally

étale maps in algebraic geometry and local diffeomorphisms in differential geometry.
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Definition 2.16. A map f : X → Y is ⃝-étale if the following square is a pullback:

X ⃝X

Y ⃝Y

ηX

f ⃝f

ηY

Given this definition alone, the similarity to other geometric notions is not clear.

We will describe two ways of illustrating this connection.

The first method relates ⃝-étale maps to differential geometry. In differential

geometry a map of smooth manifolds f : X → Y is a local diffeomorphism iff the

diagram

TX TY

X Y

Tf

f

is a pullback [nLa]. Here TX and TY are the actual tangent bundles of the manifolds.

For ⃝-étale maps we have the following.

Lemma 2.17. If f : X → Y is ⃝-étale then

T⃝X T⃝Y

X Y

T⃝f

pr1 pr1

f

is a pullback.

Proof. Adding the missing faces of the cube from Equation 2.1 we obtain a commutative

cube.

T⃝X X

T⃝Y Y

X ⃝X

Y ⃝Y

T⃝f

f

f

η

η

η

η

⃝f

Since f is ⃝-étale, the right and bottom faces are pullbacks. By definition of the

tangent bundle the front and back faces are pullbacks. Thus by rotations of Lemma 1.28

the two other faces of the cube are pullbacks, giving the result.
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Another result of traditional differential geometry is that local diffeomorphisms

induce isomorphisms on induced maps on tangent spaces [nLa]. The correspond-

ing statement in type theory, that the differential maps between formal disks are

isomorphisms, follows immediately from the previous lemma. This is because the

square

T⃝X T⃝Y

X Y

T⃝f

f

is a pullback iff the induced maps on fibres are equivalences, by Lemma 1.27. It is

quick to see these induced maps are precisely the derivative maps.

We may hope the converse to Lemma 2.17 holds in type theory, as it does in

differential geometry. However, for this we require additional assumptions about the

modality. Specifically, we need the map ηX : X → ⃝X to be surjective. Luckily, for

more geometric modalities this condition is always satisfied, as will be discussed in

Chapter 3.

Lemma 2.18. Suppose f : X → Y is such that

T⃝X T⃝Y

X Y

T⃝f

f

is a pullback. Suppose further the map ηX : X → ⃝X is surjective. Then f is ⃝-étale.

Proof. By Lemma 1.27 it is enough to show for all z : ⃝X the induced map on

fibres ϕ : fibηX (z) → fibηY (⃝f(z)) is an equivalence. Since ηX is surjective we have

∥z = ηX(x)∥ for some x : X. Since we are trying to prove isEquiv(ϕ), which is a

proposition, we can obtain a term p : z = ηX(x), by the elimination rule of propositional

truncation. Then ϕ is equivalent via p to the map dfx : D⃝(X, x) → D⃝(Y, f(x)). By

assumption that the tangent square is a pullback we know dfx is an equivalence, and

so is ϕ.

2.4 Orthogonal Factorisation Systems

The promised second method of relating ⃝-étale maps to more traditional geoemtric

notions requires the development of some machinery. We will show that ⃝-étale maps

satisfy a lifting condition. This is analogous to scheme theory in which formally étale

maps are those that lift against first order thickenings of schemes [Sta23, Tag 02HF].
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In analogy with this, ⃝-étale maps lift against maps inducing an equivalence on the

modal level. To develop a suitably nice theory of lifting conditions, we introduce

orthogonal factorisation systems.

Definition 2.19. An orthogonal factorisation system is formed of two collections

of maps L,R :
∏

X,Y :U(X → Y ) → Prop sastisfying:

1. L and R contain all equivalences, and are closed under composition.

2. For any map f : X → Y there is a type im(L,R)(f) and maps

fL : X → im(L,R)(f)

fR : im(L,R)(f) → Y

so that the following triangle commutes:

X Y

im(L,R)(f)

f

fL fR

3. For all i : A→ B in L and f : X → Y in R the following square is a pullback.

XB XA

Y B Y A

i◦

◦f ◦f

i◦

We say i is left orthogonal to f and f right orthogonal to i.

We now unpack this definition. The first condition ensures that L and R specify

subcategories of U , containing all equivalences. The second condition comprises the

“factorisation” element. Every map decomposes into a map in L followed by a map in

R.

Orthogonality is the most interesting component of the definition. It is best

understood as encoding a lifting condition, which is often the setting orthogonality

appears in traditionally. The square as given is a pullback iff the natural map

XB → XA ×Y A Y B is an equivalence. That is, for each element of XA ×Y A Y B there

is a unique element in XB mapping onto it. An element of XA ×Y A Y B is a triple
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(g, h, p) where g : A→ X, h : B → Y and p : g ◦ f = i ◦ h. So XA ×Y A Y B is the type

of commutative squares of the form:

A X

B Y

g

i f

h

The natural map then sends a map l : B → X to the commutative square:

A X

B Y

l◦i

i f

f◦l

The square being a pullback tells us that for every commutative square in XA×Y A Y B

there is a unique lift B → X making both triangles commute:

A X

B Y

g

i f

h

Furthermore the proofs of commutativity satisfy an extra coherence condition, but we

will not detail this here as it does not matter for us.

Example 2.20. The most basic example of an orthogonal factorisation system is

given by the classes of surjective and injective maps.

2.5 Étale Maps are Geometric, Again

Definition 2.21. A map f : X → Y is said to be an ⃝-equivalence if ⃝f is an

equivalence.

Example 2.22. We give some useful examples of ⃝-étale maps and ⃝-equivalences.

1. All modal units are ⃝-equivalences as ⃝η : ⃝A→ ⃝⃝A is an equivalence by

Lemma 2.6, since ⃝A is modal, and ⃝ηA = η⃝A by induction.

2. For any f : A→ B, the map ⃝f is ⃝-étale since in the following diagram the

top and bottom maps are equivalences, making the diagram a pullback.

⃝A ⃝⃝ A

⃝B ⃝⃝B

η⃝A

⃝f ⃝⃝f

η⃝B
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Lemma 2.23 ([CR20] Proposition 6.3). ⃝-equivalences satisfy the 3-for-2 property.

That is given a commuting triangle

A C

B

in which any two of the maps are ⃝-equivalences then the third is.

Lemma 2.24. The classes of ⃝-étale maps and ⃝-equivalences:

1. Contain all equivalences

2. Stable under composition

Proof. Equivalences are ⃝-étale maps since if f is an equivalence so is ⃝f and hence

the defining square is automatically a pullback. Compositions of étale maps are étale

by pullback pasting.

Equivalences are ⃝-connected since their fibres are contractible, and thus modal,

by Lemma 2.7. Equivalences are stable under composition by the 3-for-2 property.

Lemma 2.25 ([CR20] Proposition 6.3). ⃝-equivalences are stable under pullback by

⃝-étale maps.

Lemma 2.26. A map f : A → B is an ⃝-equivalence iff for all ⃝-modal types X

the post-composition map fX : XB → XA is an equivalence.

Proof. (⇒) Let X be a ⃝-modal type. Suppose f : A→ B is an ⃝-equivalence. We

have a chain of equivalences:

(B → X) ≃ (⃝B → X) ≃ (⃝A→ X) ≃ (A→ X)

g 7→ Ind⃝(g) 7→ Ind⃝(g) ◦⃝f 7→ Ind⃝(g) ◦⃝f ◦ ηA

The first and last maps are equivalences by modal induction. The intermediate map

is an equivalence as ⃝f is. We calculate:

Ind⃝(g) ◦⃝f ◦ ηA = Ind⃝(g) ◦ ηB ◦ f By naturality

= g ◦ f By modal induction

So this composition of equivalences is composition with f , and the map − ◦ f = fX is

an equivalence.
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(⇐) Suppose − ◦ f : (B → X) → (A → X) is an equivalence for all modal

X. We extend this to an equivalence (⃝B → X) → (⃝A → X) using a similar

chain of equivalences, giving the map Ind⃝ ◦ (− ◦ f) ◦ (− ◦ ηB). We check this is

map the composition − ◦⃝f . By function extensionality it is enough to check for

all g : ⃝B → X that Ind⃝(g ◦ ηB ◦ f) = g ◦ ⃝f . This follows from naturality,

ηB ◦ f = ⃝f ◦ ηA, and the definition of Ind⃝ as the inverse to − ◦ ηA.
Now we define an inverse to ⃝f . Since the map

− ◦⃝f : (⃝B → ⃝A) → (⃝A→ ⃝A)

is an equivalence there is g : ⃝B → ⃝A such that g ◦ ⃝f = id⃝A. Since g is left

inverse to ⃝f we have ⃝f ◦ g ◦⃝f = ⃝f . But composing on the right by ⃝f is an

equivalence, so ⃝f ◦ g = idB and g is right inverse to ⃝f . So g is inverse to ⃝f and

⃝f is an equivalence.

Theorem 2.27. The classes of ⃝-equivalences and ⃝-étale maps from an orthogonal

factorisation system.

Proof. We already know that ⃝-equivalences and ⃝-étale maps are closed under

composition and contain all equivalences. Let f : A→ B. Consider the diagram:

A

B ×⃝B ⃝A ⃝A

B ⃝B

η

f

ϕ

pr⃝A

prB ⃝f

η

The universal property of pullbacks gives the map ϕ. prB is the pullback of the étale

map ⃝f , and hence is étale. pr⃝A is the pullback of the ⃝-equivalence η, against

étale maps prB and ⃝f . Hence by Lemma 2.25, pr⃝A is an ⃝-equivalence. By the

3-for-2 rule we deduce ϕ is an ⃝-equivalence. So we have factored f = prB ◦ ϕ as an

⃝-equivalence followed by an ⃝-étale map.

For orthogonality suppose i : A → B is an ⃝-equivalence and f : X → Y is an

⃝-étale map. We want to show that

XB XA

Y B Y A

i◦

◦f ◦f

i◦
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is a pullback. Consider the commutative cube:

XB XA

(⃝X)B (⃝X)A

Y B Y A

(⃝Y )B (⃝Y )A

Since i : A → B is an ⃝-equivalence the induced maps (⃝X)B → (⃝X)A and

(⃝Y )B → (⃝Y )A are equivalences, by Lemma 2.26. So the front square of the cube

is a pullback square. The square

X ⃝X

Y ⃝Y

is a pullback since f is ⃝-étale. Since the exponential functor preserves limits, the left

and right faces of the cube are pullbacks. By Lemma 1.28 the back face is a pullback,

and i and f are orthogonal.
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Chapter 3

Nullification

We now turn our attention to an important class of modalities which lend themselves

to geometric sitautions. These modalities are known as nullification at a collection

of types.

Definition 3.1. Let D : A→ U be a type family. We say X is D-null if the map

x 7→ (d 7→ x) : X → (D(a) → X)

is an equivalence for each a : A. That is every map D(a) → X is constant.

Nullification is an operation which takes a type X and produces a D-null type

functorially. The D-null types are intuitively those that “see” each type in the

collection D as contractible. Nullification appears in many places: We will see it can

be used to generalise the propositional truncation operation introduced in Chapter 1.

It has also been used to incorparate concepts from synthetic differential geometry into

HoTT [Mye22b].

3.1 Constructing Nullification

To construct nullification we will use a higher inductive type to force all the conditions

needed to hold.

Definition 3.2. Let D : A→ U and X : U we define the type ND(X) to be the HIT

with constructors:

1. | − | : X → ND(X)

2. hub : {a : A} → (D(a) → ND(X)) → ND(x)

3. spoke : {a : A} (f : D(a) → ND(X)) (d : D(a)) → hub(f) = f(d)
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4. hub= : {x, y : ND(X)} {a : A} → (D(a) → x = y) → x = y

5. spoke= : {x, y : ND(X)} {a : A} (f : D(a) → x = y) (d : D(a)) → hub=(f) =

f(d)

We will show the first constructor satisfies the correct properties of a modal unit. The

second and third constructors tell us that the image of every map f : D(a) → ND(X)

is contractible. The map hub gives us the centre of contraction, and spoke gives us the

contraction onto hub. Similarly the fourth and fifth condition tells us that for every

pair of elements x, y : ND(X) any map f : D(a) → x = y has contractible image.

We will now show that we have a Σ-closed reflective subuniverse given by nullifica-

tion. To do this we will need an alternate description of equivalences.

Definition 3.3. A map f : A→ B is a path-split equivalence if:

• f has a right inverse.

• For all x, y : A the map apf : x = y → f(x) = f(y) has a right inverse.

Lemma 3.4. A map f : A→ B is an equivalence iff it is a path-split equivalence.

Proof. Suppose f is an equivalence. Then f has an inverse, say g, so f clearly has a

right inverse. Also apf also has an inverse given by apg, which is also a right inverse.

So f is a path-split equivalence.

Now suppose f is a path-split equivalence. Then let g : B → A be the right inverse.

We claim g is also a left inverse. Let x : A. Then f(g(f(x))) = f(x) since g is a right

inverse to f . By applying the right inverse of apf , we deduce g(f(x)) = x. Thus f is

an equivalence.

We will require the following simple lemma about function extensionality:

Lemma 3.5. Let x, y : X and q : x = y. We have a term funExt(λd.q) : λd.x = λd.y.

This satisfies funExt(λd.q) = apλx.λd.x(q).

Proof. By path induction it is enough to show this result when q is reflx. In this case we

have funExt−(reflλd.x) :≡ λx. reflx. So funExt(λx. reflx) = reflλd.x ≡ apλx.λd.x(reflx).

Lemma 3.6. For all D : A→ U and X : U the type ND(X) is D-null.
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Proof. We need to show that for each a : A the map

x 7→ (d 7→ x) : ND(X) → (D(a) → ND(X))

is an equivalence. We will show that it is a path-split equivalence. So we start by

constructing a right inverse to this map. Define

ϕ : (D(a) → ND(X)) → ND(X)

ϕ(f) :≡ hub(f)

This is a right inverse since

(λd.ϕ(f) = f) ≃

 ∏
d:D(a)

hub(f) = f(d)


by function extensionality, and spoke(f) has the type of the right hand side.

Now let x, y : ND(X). We will show that the induced map

apλx.λd.x : x = y → (λd.x) = (λd.y)

has a right inverse. Given p : λd.x = λd.y we obtain

funExt−(p) :
∏

d′:D(a)

((λd.x)(d′) = (λd.y)(d′))

The type reduces judgementally to give:

funExt−(p) : D(a) → (x = y)

Then we define the right inverse ψ to be ψ(p) :≡ hub=(funExt
−(p)). This is a right

inverse since for any p : λd.x = λd.y we have funExt−(p) : D(a) → x = y so we can

apply spoke= to get:

spoke=(funExt
−(p)) :

∏
d:D

hub=(funExt
−(p)) = funExt−(p, d)

Noting the value on the left is definitionally the application of a constant function,

using function extensionality we obtain:

funExt(spoke=(funExt
−(p))) : λd.hub=(funExt

−(p)) = funExt−(p)
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Finally we apply funExt, and using Lemma 3.5, we get:

apλx.λd.x(ψ(p)) ≡ apλx.λd.x(hub=(funExt
−(p)))

= funExt(λd.hub=(funExt
−(p)))

= funExt(funExt−(p))

= p

Lemma 3.7. Nullification forms a reflective subuniverse

Proof. We choose the modal operator to be ND and the unit to be | − |. The modal

family are the D-null types. We have already shown that ND(X) is D-null. Thus

it only remains to show the map f 7→ f ◦ | − | : (ND(X) → Y ) → (X → Y ) is an

equivalence for every D-null type Y . This follows by using the induction principle on

ND(X) to extend a map X → Y to a map ND(X) → Y when Y is D-null. To see

this proof see Spitters, Shulman, and Rijke, Theorem 2.18 [SSR20].

Lemma 3.8. Nullification is a Σ-closed reflective subuniverse.

Proof. Suppose X : U and Y : X → U satisfy X is D-null and Y (x) is D-null for all

x : X. Then for all a : A we have

D(a) →
∑
x:X

Y (x) ≃
∑

g:D(a)→X

∏
d:D(a)

Y (g(d)) Separating into components

≃
∑
x:X

D(a) → Y (x) Since X is D-null

≃
∑
x:X

Y (x) Since Y (x) is D-null

So
∑

x:X Y (x) is D-null.

For notational ease we refer to properties of the modality ND by just the type D.

For example we will say a map f : X → Y is D-étale rather than ND-étale.

3.2 Properties

Lemma 3.9. Let D : A→ U be a type family. For each a : A the type ND(D(a)) is

contractible.
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Proof. We choose the centre of contraction to be hub(| − |), where

| − | : D(a) → ND(D(a))

is the constructor. We want to show hub(| − |) = z for all z : ND(D(a)). Since

ND(D(a)) is ND-modal, so is the type hub(| − |) = z for any z : ND(D(a)). Thus

it suffices to show hub(| − |) = |d| for each d : D(a), by modal induction. We have

spoke(| − |, d) : hub(| − |) = |d| for each d : D(a). Then by definition ND(D(a)) is

contractible.

Now fix a pointed type (D, d0) and consider the modality ND. This is notation for

nullification at the constant type family 1 → U given by ∗ 7→ D.

Lemma 3.10. All propositions are D-null.

Proof. Let P be a proposition. Then λp.λd.p : P → (D → P ) and λf.f(d0) : (D →
P ) → P are inverse. This is because P and D → P are both propositions, so there is

nothing to check. We verify D → P is a proposition. If f, g : D → P then for all x : D

we have f(x) = g(x) since P is a proposition. By function extensionality f = g.

Lemma 3.11. All the modal units ηX : X → ND(X) are surjective

Proof. We wish to define a function (z : ND(X)) → ∥(y : X) × (|y| = z)∥. Since

the codomain is a proposition, by Lemma 3.10 it is D-null. Hence it is enough to

define a function x : X → ∥(y : X) × (|y| = |x|)∥ by modal induction. The map

x 7→ |(x, refl|x|)| works.

Lemma 3.12. For any pointed type (X, x) we have

(D, d0) →∗ (X, x) ≃ (D, d0) → DD(X, x)

Proof. The backwards map is simply projection onto the first argument. That is for

(g, p) : (D, d0) →∗ DD(X, x), we get pr1 ◦ g : B → X. And since p : g(d0) = (x, refl|x|)

we deduce that appr1(p) : pr1(g(d0)) = x

The forwards map is defined in the following way. Suppose we have (f, p) :

(D, d0) →∗ (X, x) Note that ND(D) is contractible, by Lemma 3.9. Hence for all

d, d′ : D we have |d| = |d′|. Then by Lemma 2.13 we deduce that |f(d)| = |f(d′)|.
But then for all d : D we have |f(d)| = |f(d0)| = |x|. And so we can extend f to

f̃ : D → DD(X, x). And since the proof |f(d0)| = |f(d0)| is given by reflexivity, this

becomes a pointed map.

Checking these two operations are inverse to each other is an exercise in definition

unwinding.
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We now provide some additional motivation for nullification. Nullification is

an extremely important class of modalities, generalising some of the most common

modalities. For example propositional truncation is nullification at S0. We will show

that nullifying at Sn+1 generalises this construction, and provides the operation of

n-truncation, removing the higher homotopical information from a type.

Lemma 3.13 ([Uni13] Theorem 7.2.9). A type A is n-truncated iff for all a : A we

have Ωn+1(A, a) is contractible.

Proposition 3.14. A type is n-truncated iff it is Sn+1-null.

Proof. A type A is n-truncated iff for all a : A the type Ωn+1(A, a) is contractible, by

Lemma 3.13. But by Corollary 1.21 we have Ωn+1(A, a) ≃ Sn+1 →∗ (A, a). This and

Lemma 3.13 imply if A is n-truncated then Sn+1 → A ≃ (a : A)× (Sn+1 →∗ (A, a)) ≃
A. This equivalence is given by evaluation at the basepoint so A is Sn+1-null.

Now suppose A is Sn+1-null. Then (Sn+1 → A) ≃ A by evaulation at the basepoint.

But then the projection map (a : A)× (Sn+1 →∗ (A, a)) → A is an equivalence. Hence

the fibres of this map, given by Sn+1 →∗ (A, a), must be contractible. So for each a,

the loop space Ωn+1(A, a) is contractible.

We refer to Sn+1-nullification as n-truncation and denote it ∥ ∥n, extending
propositional truncation.

3.3 Étale maps for nullification

A simple corollary of the factorisation system of Theorem 2.27 is that all D-étale

maps lift against the inclusion of the distinguished point of D. This is because it is

clear that 1 → D is a D-equivalence since ND(D) is contractible.

Quesiton 3.15. Are the D-étale maps precisely those which are right orthogonal to

the map 1 → D; ∗ 7→ d0?

The current status of this question is open, although some partial results have been

answered. We now develop the theory to answer this question in the special case of

the modality given by nullifying at Sn+1 the n+1-sphere [CR20]. We will present this

special case in a much more general way than originally described with the hope that

this method of proof can be extended. We incorparate ideas of Christensen et al. who

define pairs of modalities with a similar relationship to nullification at the n-sphere

and (n+ 1)-sphere. [Chr+18].
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Definition 3.16. Let (isModal,⃝, η) be a modality.

1. We say a map f : X → Y is ⃝-modal if for all y : Y we have isModal(fibf (y)).

2. We say a type X is ⃝-separated if for all x, y : X the type x = y is modal.

3. We say a type X is ⃝-connected if ⃝X is contractible. Further a map

f : X → Y is ⃝-connected if for all y : Y the fiber fibf (y) is ⃝-connected.

It turns out for any modality, the collection of ⃝-separated types forms a modality,

however we will only show this in the case of nullification. Now fix a type B, which is

not necessarily pointed. Nullification at B and at its suspension ΣB hold a special

relation to each other: The ΣB-null types are precisely the B-separated types.

Lemma 3.17. A type X is ΣB-null iff it is B-separated

Proof. X is B-separated iff for all x, y : X we have x = y ≃ (B → x = y) by the

p 7→ λb.p. But this is true iff

X ≃
∑
x,y:X

(x = y) ≃
∑
x,y:X

(B → x = y)

by the map x 7→ (x, x, λb. reflx). The recursion principle for suspensions states∑
x,y:X

(B → x = y) ≃ ΣB → X

so we deduce X is be B-seperated iff X ≃ ΣB → X by the map x 7→ λz.x. That is

X is ΣB-null.

Lemma 3.18. We have for all types X an equivalence ND(NΣD(A)) ≃ ND(A)

Proof. This is an immediate corollary of Christensen et al., Lemma 2.11 [Chr+18].

Lemma 3.19. Fix a type X. For all x, y : X we have NB(x = y) ≃ |x| =ΣB |y|.

Proof. We adapt the proof of Theorem 7.3.12 from “Homotopy Type Theory” [Uni13].

Call the subuniverse of B-null types UB. We have seen that equality types between

modal types are modal. Thus by definition the type UB is B-separated and is hence

ΣB-null. Now define a type family by modal induction:

P : NΣB(X) → NΣB(X) → UB

P (|x|, |y|) :≡ NB(x = y)
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Then for all u, v : NΣB(X) we define a map decode : P (u, v) → u = v by induction

again. We define this map on |x|, |y| and p : x = y to be

decode(|p|) :≡ ap|−|(p)

For all x : X we have P (|x|, |x|) ≡ NB(x = x) and thus | reflx | : P (|x|, |x|) Since
for u : NΣB(X) the type P (u, u) is B-null, it is thus ΣB-null and we may apply

modal induction to define ϕ :
∏

u:NΣB
P (u, u). Then we may define an inverse map

for u, v : NΣB(X). By transporting along the type family λz.P (u, z) and p : u = v we

obtain a function p∗ : P (u, u) → P (u, v). Then we define:

encode : u = v → P (u, v)

encode(p) = p∗(ϕ(u)) : P (u, v)

The maps decode and encode are inverse. To show decode(encode(p)) = p for all

p : u = v it is enough to check when p is reflu by path induction. The type u = u is

ΣB-null, so by modal induction we can assume u ≡ |x| for some x : X. But then

decode(encode(refl|x|)) ≡ decode(refl|x|∗(ϕ(|x|))

≡ decode(| reflx |) since refl|x|∗ is the identity

≡ ap|−|(reflx)

≡ refl|x|

and we deduce that decode ◦ encode is the identity.

For all u, v : NΣB(X) we want to show
∏

z:P (u,v) encode(decode(z)) = z. Since

P (u, v) is B-null and equalities preserve being modal, the type which forms our goal is

B-null and hence is ΣB-null. So we may assume u = |x| and v = |y| for some x, y : X by

induction. Applying induction again we may assume z = |p| : NB(x = y) ≡ P (|x|, |y|),
for some p : x = y. Now we may apply path induction on p to assume x ≡ y and

p ≡ reflx. Then we may compute, purely judgementally:

encode(decode(| reflx |)) ≡ encode(ap|−|(reflx))

≡ encode(refl|x|)

≡ refl|x|∗(ϕ(|x|))

≡ ϕ(|x|)

≡ | reflx |

Thus we have shown for all u, v : NΣB(X) the types P (u, v) and u = v are equivalent.

So we deduce for all x, y : X the types NB(x = y) :≡ P (|x|, |y|) ≃ |x| = |y|.
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Lemma 3.20. Suppose X, Y are ΣB-connected. Then any f : X → Y is B-connected.

Proof. Let y : Y Then

NB(fibf (y)) ≡ NB

(∑
x:X

f(x) = y

)

≃ NB

(∑
x:X

NB(f(x) = y)

)
By Lemma 2.10

≃ NB

(∑
x:X

ηΣB(f(x)) = ηΣB(y)

)
By Lemma 3.19

≃ NB(X)

≃ 1

The penultimate equivalence is because Y is ΣB-connected, and thus the type

ηΣB(f(x)) = ηΣB(y) is contractible. The final equivalence is because X is ΣB-

connected and hence is B-connected. Hence by definition f is B-connected.

Definition 3.21. We say a type B is good if for any map f : X → Y between

connected types such that fΣB : XΣB → Y ΣB is an equivalence, we have f is NB-

modal.

As part of the proof of Cherubini and Rijke, Theorem 3.10 [CR20] it is remarked

that Sn is good. In fact a stronger result is claimed, that the converse is true, that

whenever f is Sn-modal, the map fSn+1
is an equivalence. This strengthened claim is

false, however, and we provide a counterexample.

Example 3.22. Consider the unique map S1 → 1. This is S2-modal, since the circle is

1-truncated. Now we can exponentiate this by ΣS2 ≡ S3 to get a map (S1)
S3

→ (1)S
3

.

Now (1)S
3

≃ 1. And S1 is 1-truncated and thus is 2-truncated. Hence S1 is S3-null

and hence (S1)
S3

≃ S1. So this gives a map S1 → 1, which clearly cannot be an

equivalence.

Theorem 3.23. Suppose B is good. Then a map f : X → Y is ΣB-étale iff it lifts

against the base point inclusion onto the basepoint N : ΣB.

Proof. The forwards direction follows from Theorem 2.27, since the map 1 → ΣB is a

ΣB-equivalence.
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For the reverse direction, suppose the map f : X → Y lifts against the basepoint

inclusion. That is the square

XΣB Y ΣB

X Y

fΣB

f

is a pullback. The downwards maps are evaluation at the basepoint N . So the fibre

at x : X of XΣB → X is( ∑
f :ΣB→X

f(N) = x

)
≡ (ΣB,N) →∗ (X, x)

Similarly for y : Y the fibre of Y ΣB → Y is (ΣB,N) →∗ (Y, y) Since this is a pullback

the induced map on fibres are equivalences by Lemma 1.27. Hence for each x : X the

induced map

((ΣB,N) →∗ (X, x)) → ((ΣB,N) →∗ (Y, f(x)))

is an equivalence. Now by Lemma 3.12 applied to the source and target, we obtain a

map

((ΣB,N) →∗ D
ΣB(X, x)) → ((ΣB,N) →∗ D

ΣB(Y, f(x)))

which is an equivalence. But we may check that this map is induced by

dfx : DΣB(X, x) → DΣB(Y, f(x))

Since B is good we deduce the map dfx is B-modal. But also the disks DΣB(X, x) and

DΣB(Y, f(x)) are ΣB-connected. Thus by Lemma 3.20 the map dfx is B-connected.

A B-connected and B-modal map is an equivalence. Thus for all x : X the map dfx is

an equivalence. Using Lemma 1.27 we deduce that the following square is a pullback:

TΣBX TΣBY

X Y

TΣBf

f

Since ΣB is pointed, the modal units are surjective by Lemma 3.11, we may apply

Lemma 2.18 and deduce that f is ΣB-étale.

Corollary 3.24. A map f : X → Y is ∥ − ∥n-étale iff it lifts against the basepoint

inclusion 1 → Sn+1

Proof. Since Sn for any n ≥ 0 is good we may apply Theorem 3.23 and deduce the

result.
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